

3,3'-bisjuglone monomethyl ether (4). 3,3'-Bisjuglone (25 mg) in CHCl_3 (35 ml) was shaken with MeI (2 ml) and Ag_2O (150 mg) at room temp. Formation of the monomethyl ether of 3,3'-bisjuglone was followed by TLC. The monomethyl ether was isolated after chromatography and crystallized from C_6H_6 in yellow crystals (10 mg), mp 270°; $\nu_{\text{max}}^{\text{KBr}}$ cm^{-1} : 3060, 1660, 1630 and 1610; $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 255 (4.44), 412 (3.93).

Dimethyl isobisjuglone (5). 3,3'-Bisjuglone dimethyl ether (20 mg) in CHCl_3 (15 ml) and a little EtOH , was exposed to sunlight for 3 hr. Dimethyl iso-bisjuglone separated as deep purple coloured crystals (19 mg), mp 324°. (Found: C, 69.61; H, 3.59; $\text{C}_{22}\text{H}_{14}\text{O}_6$ requires: C, 70.59; H, 3.77%). $\nu_{\text{max}}^{\text{KBr}}$ cm^{-1} : 3325, 2900, 2820, 1650; $\lambda_{\text{max}}^{\text{Dioxane}}$ nm: 265(2.47), 295(1.83), 370(1.29) and 490(1.53).

3,3'-bisjuglone hexaleucoacetate (2). 3,3'-Bisjuglone (50 mg), dry NaOAc (100 mg), Zn dust (240 mg) and Ac_2O (9 ml) were refluxed for 2 hr. The product, after chromatography and crystallization from $\text{CH}_2\text{Cl}_2\text{-MeOH}$, was colourless (45 mg),

mp 275°. (Found: C, 63.80; H, 4.51. $\text{C}_{32}\text{H}_{26}\text{O}_{12}$ requires: C, 63.87; H, 4.35%). $\nu_{\text{max}}^{\text{KBr}}$ cm^{-1} : 2920, 1745, 1600, 1490, 1415; $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 235(4.80), 253 sh (4.60), 280(4.07) and 292(4.07).

REFERENCES

1. Sidhu, G. S., Pardhasaradhi, M. and Hari Babu, M. (1975) *Indian J. Chem.* **13**, 749.
2. Shand, A. J. and Thomson, R. H. (1963) *Tetrahedron* **19**, 1919.
3. Cooke, R. G. and Sparrow, L. G. (1965) *Aust. J. Chem.* **18**, 218.
4. Yoshihira, K., Tezuka, M. and Natori, S. (1971) *Chem. Pharm. Bull.* **19**, 2308.
5. Sidhu, G. S. and Prasad, K. K. (1970) *Tetrahedron Letters*, 1739.
6. Laasch, H. (1976) *Tetrahedron Letters*, 3287.

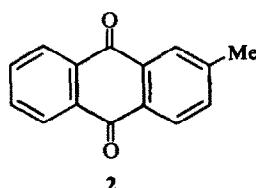
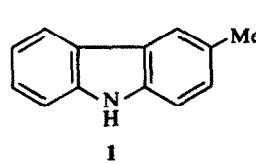
2-METHYLANTHRAQUINONE FROM CLAUSENA HEPTAPHYLLA

D. P. CHAKRABORTY, A. ISLAM and S. ROY

Bose Institute, Calcutta 700009, India

(Received 14 April 1978)

Key Word Index—*Clausena heptaphylla*; Rutaceae; 2-methylanthraquinone; alkaloid biosynthesis.



In the previous communication [1], we reported several carbazole alkaloids including 3-methylcarbazole [2] (1), the progenitor of the carbazole alkaloids, from *Clausena heptaphylla* Wt. & Arn. We now report the isolation of 2-methylanthraquinone from a petrol extract of the stem bark of the same plant. It had mp 178°, M^+ 222 ($\text{C}_{15}\text{H}_{10}\text{O}_2$) and NMR signals δ 7.7–8.6 (*m*, 7, ArH) and 2.65 (*s*, ArCH_3). It was identical by mmp, UV, IR and TLC with authentic material.

The co-occurrence of 2-methylanthraquinone and 3-methylcarbazole in *Clausena heptaphylla* suggests that the ring C of carbazole alkaloids is of mevalonoid origin, as is ring C of 2-methylanthraquinone [3]. Proof of the mevalonoid origin of ring C of carbazole alkaloids however awaits biosynthetic investigation.

Acknowledgements—The authors thank Dr. S. C. Bhattacharyya, Director and Dr. A. Sen, Head of the Dept. of Chemistry for their interest in the work.

REFERENCES

1. Chakraborty, D. P. (1977) *Fortschr. Chem. Org. Naturst* **34**, 279 and refs cited therein.
2. Shand, A. J. and Thomson, R. H. (1963) *Tetrahedron* **19**, *Phytochemistry* **13**, 1017.
3. Leistner, E. and Zenk, M. H. (1968) *Tetrahedron Letters*, 1595.

